Descent polynomials for permutations with bounded drop size

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Descent polynomials for permutations with bounded drop size

Motivated by juggling sequences and bubble sort, we examine permutations on the set {1, 2, . . . , n} with d descents and maximum drop size k. We give explicit formulas for enumerating such permutations for given integers k and d. We also derive the related generating functions and prove unimodality and symmetry of the coefficients. Résumé. Motivés par les “suites de jonglerie” et le tri à bull...

متن کامل

Inversion-descent polynomials for restricted permutations

We derive generating functions for a variety of distributions of joint permutation statistics all of which involve a bound on the maximum drop size of a permutation π, i.e., max{i−π(i)}. Our main result treats the case for the joint distribution of the number of inversions, the number of descents and the maximum drop size of permutations on [n] = {1, 2, . . . , n}. A special case of this (ignor...

متن کامل

Descent polynomials for kk bubble-sortable permutations of type B

Motivated by the work of Chung, Claesson, Dukes, and Graham in [5], we define a natural type B analog of the classic bubble sort, and use it to define a type B analog of the maximum drop statistic. We enumerate (by explicit, recursive, and generating function formulas) signed permutations with r type B descents and type B maximum drop at most k. We also find a connection between these signed pe...

متن کامل

Actions on permutations and unimodality of descent polynomials

We study a group action on permutations due to Foata and Strehl and use it to prove that the descent generating polynomial of certain sets of permutations has a nonnegative expansion in the basis {t(1 + t)} i=0 , m = ⌊(n−1)/2⌋. This property implies symmetry and unimodality. We prove that the action is invariant under stack-sorting which strengthens recent unimodality results of Bóna. We prove ...

متن کامل

Geometric permutations of balls with bounded size disparity

We study combinatorial bounds for geometric permutations of balls with bounded size disparity in d-space. Our main contribution is the following theorem: given a set S of n disjoint balls in R , if n is sufficiently large and the radius ratio between the largest and smallest balls of S is γ , then the maximum number of geometric permutations of S is O(γ logγ ). When d = 2, we are able to prove ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: European Journal of Combinatorics

سال: 2010

ISSN: 0195-6698

DOI: 10.1016/j.ejc.2010.01.011